
AD-12 46 STEP INTO COMPUTASIONAL GEOMETR NOTEBOOK U /5U
A ILLINOIS UNIV IT URBANA A PPLED CMPUTATION THEORY

UNCLASSFE GRO UP F P PPREPARATA M A A C_26 NOOG 4-9-C0 2

1 EE.EEomomL

r

Va

MICROCOPY RESOLUTION TEST CHART
NATIOAAL BUREAU OF STANDARS-I963-A

-~ --.---.

V04
to
q!f
q1t
04
V14
44.

12

+
An improved algorithm for the rectangle enclosure problem

D. T. L44 and F. P. Preparata,

REPORT DOCUMENTATION PAGE 3 U7 D CMUPLSTDRMS

I. MRPORT NUMER 2. GOVI ACCSSION NO. 2. AIPINIIS CATALOG MUMNIE

4. TI7'I,,I (dad sude) .S. Type OF IEPORT a 0ERC10 COVERED

STEP INTO CO UTIONAL GEOMETRY Technical Report

NOTEBOOK III a. P,01foRMING On. REPORT MUMmER

7. AUTNOR'() a. CONTRACT OR GRANT NUMIaws)

MCS-78-13642 ;MCS-79-16847;
F. P. Preparata N00014-79-C-0424;DAAG-29-78-

C-0016; CDCI-04-AB

9. PIERFORMING ORGANIZATION NAMIe ANO AOORIESS tO. PROGRAM ELZMeN1. PROJECT. TASK

Coordinated Science Laboratory, 1101 W. Springfield, ARA & WORK UNIT NUMIERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

I I. CONTROLLJNG OFFICE NAME ANC ADDRIESS 12. REPORT QATE

National Science Foundation; May 1981

Joint Services Electronics Program; 13. HUMeR O PAGES

29
14. MONITORING AGE1NCY NAMe & AOORfESS(I dierent rm CalrIline Office) IS. SECURITY CLASS. ((t/iefupt)

UNCLASS IFIED
I5a. ECL-ASSIPIrcATIONi OOWNGRAOING

SCIEULE

I6. OISTRIeUTiON STATIEMENT (o thM Rapert)

Approved for public release; distribution unlimited.

IT. OISTRIUUTION STATEMENT (of me dhsrmw en.ered in Stock 20, It d ffeent frent Rert)

I
SIS. SUPP%.IEM NTARY NOTES

IS. KEY WORDS (CmrIbme an revoe side II nioeenry and idmtify p blo k nmr)

computational geometry; analysis of algorithms; computational complexity;

monotone polygon; rectangle enclosure; vector dominance; shortest path;

constrained shortest path

20. AMSTRACT (CafltIRu On Povrn. Sid* It n*404840en d Idm00ti1V &Y 4106A monow)

S -In this notebook we present a collection of three new result i planar computa-

* tional geometry. The first problem is to test a given n-ve tex simple polygon for
monotonicity; this problem can be optimally solved in time (n). The second
result is an improved algorithm for the rectangle enclosure pr cm; this
algorithm improves over an existing one by using optimal space (p). Finally, the

third result is the construction, in time O(nlogn), of the shortest path between

two points in the interior of an n-vertex polygon P, when the path is constrained

to lie within P.

0 0 1473

:. I" ... 11 a.,a

- ,. , +

!E

STEP INTO COMUTATICHAL GEOMETRY

NOTEBOOK III

by

Franco P. Preparata

This work was supported in part by the National Science Foundation

T and in part by the Joint Services Electronics Program (U.S. Army, U.S.

Navy and U.S. Air Force) and in part by the Control Data Corporation.

I-

I i
I

Reproduction in whole or in part is permitted for any purpose of the

I United States Government.

I

Aprvd o uli eese itibto .lmtd

STEP INTO COMPUTATIONAL GEGMRY

NOTEBOOK III

1.
Abstract

V. In this notebook we present a collection of three new results in planar

computational geometry. The first problem is to test a given n-vertex sim-

ple polygon for monotonicity; this problem can be optimally solved in time

e (n). The second result is an improved algorithm for the rectangle enclosure

problem; this algorithm improves over an existing one by using optimal space

L e (n). Finally, the third result is the construction, in time O(nlogn), of

the shortest path between two points in the interior of an n-vertex polygon

P, when the path is constrained to lie within P.

*Ieta

r 0 atlad/r'""--
it 8poelai

[
DIP919%~

! 1 2

[~STEPS INTO COMFUTIONAL (Z(C4ETRY

NOTEBOOK III

F. P. Preparata, Editor

L.
SA long while after Notebook II of this collection, which appeared in

September 1977, this notebook contains a few new results in computational

* Igeometry, whose manuscript sizes do not reach the usual standard of tech-
nical reports but whose content may be of interest to researchers in the

I. field. Again, one of the main reasons of this collection is ease of access.

]- The first problem considered is the test of whether a given n-vertex

simple polygon is monotone. Since certain computational problem involving

polygons are easier for monotone than for arbitrary simple polygons, the

question has not only theoretical but also practical interest. We present

I an e (n) time solution of the problem of deciding whether a given simple

polygon P is monotone and, if so, of exhibiting a line.A with respect to

which P is monotone. As a consequence, a monotone polygon can be triangulated

also in time 9 (n).

Next we have studied a problem which has received some attention
I.

recently in the context of the geometry of rectangles: the rectangle

enclosure problem. Given a set of n rectangles in the plane, with sides

parallel to the coordinate axes, we -must find all q pairs of rectangles

such that one rectangle of the pair encloses the other. The algorithm

presented is an alternative to and an improvement of the one by Vaishnavi

and Wood. While both techniques have worst-case running time 0(nlog 2n+q),

the described algorithm uses optimal storage 8 (n) rather than O(nlog n) as

the Vaishnavi-Wood's technique, and works entirely in-place using very

conventional data structures.

2.dat

~~ 3

The third problem reported in this notebook in the construction of the

Euclidean shortest path within a simple polygon P. Given source a and

Idestination t as two points in the interior of P, Shamos had originally solved

this problem (which he called "internal distance") by first constructing

the vievability graph of its vertices and subsequently by applying a

standard shortest path algorithm to the viewability graph, where each edge

is weighted with its length. In actuality only relevant portions of the

I. viewability graph need be constructed. Here we present an algorithm based

on the observation that if we triangulate P, the shortest path is topologically

a path on the dual of the triangulated P. The described algorithm runs in

]I time O(nlogn) for an n-vertex P.

ii

Ii

[
F

I.I

[1 4

LI
Ii

*

TESTING A SIMPL POLYGON FOR NQOOMICITY

Franco P. Preparata and Kenneth J. Supowit

1. Introduction

Let P be a simple polygon in the plane having vertices pp...,p. 1

1 counterclockwise on its boundary. The sides of P, called arcs, are denoted

as ej . (pj'pj+l) and are directed from pj to P j+l (indices are taken

modulo n throughout). A chain Cij - (e ei+i,...aej 1) is a sequence of

arcs on the boundary of P. C is monotone with respect to a (straight)

ij - ____

line 2 if the projections of the vertices ~i~~'*'jon I are ordered
as the vertices in C * P is monotone if there exists a line A such that

the boundary of P can be partitioned into two chains C i nd Cji that are

monotone with respect to A (if a direction is chosen on I then one chain

iis monotone non-decreasing, the other is monotone non-increasing).

Note that the class of monotone polygons properly contain the class

of convex polygons, and are properly contained in the class of simple

I polygons. It appears that certain computational problems involving polygons

are easier for monotone than for arbitrary simple polygons. For example,

I the fastest algorithm known to triangulate an arbitrary simple polygon

This work was supported in part by National Science Foundation Grant

mCs-78-13642, by the Joint Services Electronics Program Contract NOO014-
79-C-0424, and by Control Data Corporation Contract CDCI-04-AB.

I'

1-"]5

1. requires S(nlogn) time (1]. However, given a line I and a polygone P

monotone with respect to 1, P can be triangulated in a(a) time (1].

We consider the following problem: given a simple polygon P, decide

t. 'whether P is monotone and, if so, exhibit a line £ with respect to 'which

P is monotone. We present a e (n) time solution to this problem; hence,

-! by the above remarks, there is a 8 (n) time algorithm that, given a simple

polygon, triangulates it in 9 (n) time if it is monotone.

2. The algorithm

Given the polygon P, as defined in the preceding section, let 6 be

the counterclockwise polar angle at arc ei (1 - 0,...,n-1) with respect to

a chosen direction (for example, the direction of e0). Define ai as the

counterclockwise wedge from 8 .1 to 9i if the external angle at vertex pi

" is 2 1800; as the clockwise wedge from 9 11 to 9i, otherwise. Note that,

by the simplicity of P, the angle of wedge o (i = 0,...,n-L) has size

j < 1800.

Pi+l e i

interior of P \ :

external i-l
i angle at pi eo

Pi-L

(a) (b)

IFigure 1. Illustration of the correspondence between wedge
yi and the external angle at pi.

[-,,-

Ii 6

lI Given a chain C (ej$eJ+l,...ej+k)s define ai(C) R- j Uie
i-j+l

at (C) is the union of the wedges atjj+l...,'Oj+k . 1. Obviously, a(C) is

a wedge. We now prove:

Lemma 1. C - (eI .. ,e)k is monotone with respect to I if and only if
Ik
the normal to I has a polar angle a a(C).

Proof: Given that C is monotone with respect to Z, suppose that

a E ai(C) (figure Zb). This implies that there is at least one wedge vi

such that 9 E a,, for som i E 1 l,2,...,k-1). If we now consider (figure 2a) the
! • Pi-2L

I e~i+1///

ii4

; i [Figure 2. Illustration for the proof of Lemma 1.

ei 1

Sprojections of vertices pipi+l, and p on 1, we have that the projections

of Pi and pL+2 are on the same side of that of Pil' i.e., C is not mono-

Ltone with respect to 2, a contradiction. Thus 3 5 a(C).

, [Conversely, suppose that C is not monotone with respect to 2. Then

~there is a vertex p£ of C for which the preceding argilnts can be

~reversed.

id7

ToI 7

i Consider now a monotone polygon P. Honotonicity means that there are

two vertices Pi and pj of P and a line A, such that chains Cij and Cji

are monotone with respect to A (figure 3a). In the polar diagram (figure

[i 3b), we construct the wedges ,(Cj) and t(Cj). These two wedges are

possibly separated by two wedges y and yt (see figure 3b). Note chat

I 9. 1 E a(Cji) and 8£ E a(C ij); also YC S "i. whence size (Y size (of) <

180. Similarly, size (^y) < 180. Moreover, by Lma 1, the line A

passing through the origin of the polar diagram and perpendicular to A

intersects neither cx(C~j) nor ot(Cj 1); thus *(C~j) and c(Cjt) lie on opposite

i - sides of A'. \

'I

Iii -

p (C

(a) (b)

[
-1 figure 3. Illustration of the correspondence between a

~simple polygon P and polar diagram of its arcs.

The polar rays correspondi.ng to the n arcs of P par ttion the polar
I range (0,2,) i.nto n coasecutiLve wedges (sone of which could be of siLze 0).

.3 Let be one - these weds ; the ualti pl.tiitv () of t i.s defined as

() ; : _ . , i.e., t:he numnber of wedges r whiLch contain . It

I e

follows that the previously introduced Y and y are precisely wedges

whose multiplicity is 1 and which are antipodal (i.e., they are crossed

by the same straight line). it is not difficult to see that the argumeni..

can be reversed, thus proving the following theorem:

Theorem. A simple polygon P is monotone if and only if the polar

diagram of its arcs contains at least one pair of antipodal intervals of

multiplicity 1.

This theorem imediately suggests an algorithm to test a simple

polygon P for zonotonicity: we process the boundary of P in the order

e0 ,e1 ...,e1 n lWen we process an edge ej, we insert a into the polar

diagram by updating the multiplicities of the polar wedges so far con-

structed. Note that the multiplicity of a wedge cannot decrease; since

we are seeking polar wedges of multiplicity 1, it is irrelevant whether a

wedge has multiplicity 2 or greater. Thus we shall label each wedge with

a symbol in the set (0,1,2), where (0,13 are actual multiplicities and 2

denotes a multiplicity z 2.

During processing we maintain a doubly-linked circular list of polar

angles, each of which separates two adjacent wedges. Each of the two

pointers (forward and backward) is labeled in the set (0,1,21. In addition,

we have a pointer to the current position B in the polar diagram. We

claim that the list satisfies the following properties:

(1) the angles are in increasing counterclockwise order;

(2) the wedge labels - possibly with the exception of one single 0

label - form an alternating string of l's and 2's.

To prove this claim, we outline the algorithm.

Initial step. 0 is chosen conventionally as i0 ' There is a single

wedge, labeled 0. We insert into the list angle 31 and label with I

'> i i

9

the wedge determined by oil, and 9 is set to "

General step. Let 8 be the current position and assume that the list

satisfies properties (1) and (2). We process " If 9 is larger

than i we scan the list forward, while if 9 is not larger than 9

we scan it backwards. The scan terminates when 9 can be inserted.i

In this process we increase by I each wedge label different from 2

and merge any two consecutive wedges receiving identical labels

(merging is, of course, done by deleting the node corresponding to the

angle value which separates them). With regard to the updating of 9,

suppose that 8 is to be inserted into wedge [, 'I: if the pointer

from t to ' is labeled 0 or 1, then a new list node is created and

9 +- a; else no new node is created and 9 4-

Clearly property (1) is satisfied after the general step, because

=i is inserted in its appropriate order. Property (2) is also satisfied,

since wedge merging guarantees the alternation of I and 2 labels on

continguous wedges (with labels different from 0).

From the performance viewpoint, it is convenient to charge the computa-

tional work to each individual list node. A list node is initially

established in constant time. Subsequently, during list scans, a node is

traversed in one direction; its pointers are for brevity referred to as

Sincoming and outgoina. The labels of both pointers are updated (0 - 1,

I - 2, 2- 2) and when both pointers are labeled 2 the node is deleted.

jEach node traversal uses constant time and each node can be traversed at
most twice before its deletion. It follows that the total running time

is O(U).

At the termination of the above algorithm, we have a partition of

the polar range [0,2T) into O(n) wedges with alternating labels 1 and 2.

10

Scanning the sequence of angles by means of two pointers b and b we
1 2

can determine the pairs of antipodal wedges. Specifically, let 9 (b1)

denote the angle pointed to by bi. We set initially G (bk) - 0 and

advance a (b2), until a (b2) - 9 (b1) 180*; at this point 9 (b1) is advanced

until a (b - (bI) < 180*, when the advancement of 9(b2) is resumed; and

so on until 9 (b2) = 0. This process clearly runs in time O(n) and obtains

all pairs of antipodal wedges (which are known to be O(n) L3]), whose labels

are concurrently compared. Since both major tasks (construction of the

sectors and detection of antipodal pairs) can be completed in linear time,

the entire monotonicity test runs in linear time, which is optimal.

Note that the above algorithm obtains all directions with respect to

which P is monotone.--I -
Conclusion

Testing an arbitrary polygon (i.e., a sequence of vertices) for con-

7-vexity [31, testing a simple polygon for star-shapedness [21, and testing

a simple polygon for monotonicity are all 9(n) time problems. An inter-

esting open problem in this area is testing an arbitrary polygon for

simplicity. For this problem, the fastest algorithm known is 9(nlogn)

time (4], but no super-linear lower bound is known.

Acknowledgements

I. The authors thank G. T. Toussaint and H. EI-Gindy for helpful

discussions on this problem.

(1)The following technique is a modification of an algorithm due to
m. I. Shamos (3] to obtain the diameter of a convex polygon.

,I

K "• ,... -

i1

REFERENCES

[1] Garey, M. L., D. S. Johnson, F. P. Preparata, and I. E. Tarjan,

"Triangulating a simple polygon," Info. Proc. Letters, Vol. 7, No. 4,

June 1978, pp. 175-179.

i [2] Lee, D. T., and F. P. Preparata, "An optimal algorithm for finding the

* kernel of a polygon," JACH, Vol. 26, 1979, pp. 415-421.

(3] Shamos, M. I., "Computational geometry," Ph.D. thesis, Dept. of

Computer Science, Yale University, 1978.

[(4] Shamos, M. I. and D. Hoey, "Geometric intersection problems," 17th

Annual Symnvosium on Foundations of Computer Science, pp. 208-215,

October 1976.

S I
I____________

12

An improved algorithm for the rectangle enclosure problem

D. T. Lee and F. P. Preparata

January, 1981

Abstract. Given a set of n rectangles in the plane, with sides parallel

to the coordinate axes, the rectangle enclosure problem consists of find-

iang all q pairs of rectangles such that one rectangle of the pair encloses

the other. In this note we present an algorithm alternative to the one by

Vaishnavi and Wood; while both techniques have worst-case running time

O(nlog 2n + q), ours uses optimal storage O(n) rather than O(nlog 2n) as the

Vaishnavi-Wood's technique. Our algorithm works entirely in-place and uses

very conventional data structures.

*his work was partially supported by the National Science Foundation under

" Grants MCS 78-13642 and MCS 79-16847 and by the Joint Services Electronics
?rogram under Contract N00014-79-C-0424.

I

I i r -...° ...

AN IMROVED ALGORITHM4 FOR
THE RECTANGLE ENCLOSURE PROBLEM

1. Given a set of n rectangles in the plane, with sides parallel to

the coordinate axes (iso-oriented rectangles), the rectangle enclosure

-tproblem consists of finding all q pairs of rectangles such that one

rectangle of the pair encloses the other.

This problem is an interesting one in the "geometry of rectangles",

which is relevant to several practical applications, primarily to the

computer-aided design of VLSI circuits [1,21. The best known solution is
due to Vaishnavi and Wood (3] and runs in time O(nlogn+q) using space

O(nlog 2n); their approach makes crucial use of some versatile, but space-

consuming, data structures called range trees and segment trees [4,5].

In this paper a new approach is described which achieves the same

time bound but uses only linear space. Thus it is space-optimal; as to

computation time, there is still a gap between upper- and lower-bound.

* - 2. We begin by transforming the rectangle enclosure problem into an

Iequivalent one, which is easier to describe and understand. Let

A ir1 ,r2 ,...,r1 be a set of iso-oriented rectangles in the plane (x,y),

where ri -[X() I x (1 ,y (i)], with ((i < i) and yi) < ,(i)
1 21 2 1(i and 1 < 2

Rectangle r. encloses rectangle r. if the following four conditions hold:

.. 1

(1) 1 1 y2 2

These conditions are trivially equivalent to

(2) -xx) - - x1 , , y -2
2 - 1I 2 in

1. 14

[. which express the well-known relation "- " of dominance between two four-

dimensional points, that is, (-xJ) X2j),y 2 0)))w (-x i),x2(i) M 2M1Y "Y 2'Y21 2)

Thus, after mapping each ri it into its corresponding four-dimensional

point, the rectangle enclosure problem becomes the point dominance problem

in 4-space. Specifically: "Given a set S = rPl'"'pn I p is a point in

4 space! for each point PL " S find a set SZ S such that Si - 'PIPE S,

P -<.Pi".

our approach to solving the point dominance problem is very similar

to the one used in [6 1 to solve a closely related problem, finding the

maxima of a set of vectors (i.e., the subset M S defined as M - (PIPES

and there is no qE S such that p .< q)). The technique is an application

of the divide-and-conquer principle. Let u,u 2 ,u 3 3u 4 be the coordinates

of our 4-space. The elements of S are reindexed so that (i < j)

(ut(pi) : U(Pj)) We then have:

Alsorithm Dominance

DI. (Divide) Partition S into S1 and S2' where S1 P pl....,P'n/ 2:} and

s2 - prn/f ,--. pn}

D2. (Recur) Solve the point-dominance problem on SI and S2, separately.

. D3. (Merge) Find all the pairs p pi, where p S and p -
~ ~ hreP~E 1 an2. '

We shall now discuss the implementation of step D3. For pi E SI and

p. Z S2, since ul(pi) £ ul (pj) by construction, we have pi- pj if and

only if uz(pi) S u2 (Pj) for I a 2,3,4. Thus Step D3 is in effect, a

three-dimensional problem. Here again, we solve it by a divide-and-

conquer technique. Specifically, let u be the median of :u2(P) SpiES2.

2

ii

I I I I * " i

J !~ 15
Algorithm Merge

41. .(Divide) Partition S1 into 'Is I d Sf into (n do that

S Plp E S 1 ,u2 (p) : u2]S (I Z S2 (P) 2, and

i2:4. S 12 S IS-Slip' $22 = $ 2"$ 21"

M2. (Recur) Solve the merge problem an the set pairs (S IIIS 211 and

"" '-S 12 'S22).

M3. (Combine) Find all pairs Pi < Pj such that p E S11 and pZ $22.

To convince ourselves of the correctness of the approach, note that

S has been partitioned into (Si1 S12',S2 1 ,S22}. Within each of these four

subset, the point-dominance problem is solved in D2; it remains to be

solved between pairs of subsets. Of the six pairs, fSIlS12) and (S21,S22)s
are also processed in D2; (SII,$2 1 and S12'22) are processed in M2;

S i, S 22} are processed in M3, while (S 12'S 1 need not be considered

because for each p E S12 and p E S21 we have u (pj) f uI(p) and

u2 (pi) > u2 (p). Notice, also that Step M3 (Combine) is a two-dimensional

Merge problem (in u3 and u4).

The key operation of the entire task is therefore the implementation

[of step M3, the two-dimensional Merge (Combine). Indeed the entire computa-

tion reduces to the careful sequencing of steps like M3; therefore, in

[what follows we shall concentrate on devising an efficient implementation

of "Combine". We shall show that "Combine" can be done in time linear in

the input size, after an initial O(nlogn) sorting, which is charged to

the entire poinc-dominance problem.

3. The initial preprocessing consists in preparing a suitable data

structure for the set S. Specifically, we set up a quadruply-threaded

I1 list (QTL), with bidirectional Links. For each p E S, we construct a node

containing the information (u1 (p),u 2 (p),u 3 (p),u4(p)) after sorting S on

.. 0

L 16

1. each coordinate, we establish four pointers NEXTI,...,VETr4, so that NEXTJ

describe the ordering on u., Bidirectional links are established by four

additional pointers PREDJ (j - 1,2,3,4). The setting up of the QTL for S,

obviously, uses time O(nlogn).

The QTL lends itself, very naturally,to the linear-time implementation

of the set-splitting operations specified by steps Dl and Ml of the preceding

algorithms. Indeed, suppose we want to split S into (S1 ,S23 and that the

elements of, say, S1 . are marked. Then, by traversing the QTL on a

selected pointer NEXTi, the list corresponding to this pointer is easily

"unmerged" into two lists, corresponding to the two sets 4SVS2] of the

- partition. Analogously given S1 and S2, in linear time we can merge the

two corresponding lists using "natural merge" [7]. Note that splitting

and merging operations simply involve modification of the pointers and

use no additional space for storing data.

Let us now consider the implementation of Step M3, "Combine". Here

we have two sets, S11 and S22' of two-dimensional points. The sets are

actually represented as a doubly-threaded list (that is, threaded on the

two coordinates u3 and u4); BEG31 and BEG32 denote pointers to the first

L positions of the two lists, for S1 1 and S2 2 , respectively, corresponding

to coordinate u3 (which is the coordinate to be scanned). We also make

use of a new list L, which is destined to contain the sorted sequence of

the u4-coordinates of a subset of Sll (specifically, the u4-coordinates of

the points of Sl whose u3-coordinate is no larger than the current scan

I- value). Temporarily, we use NEXTL and BEGL to denote the forward and

I initial pointers for L, although - as we shall see below - .XT4 can be

used in place of NEXTL. Letting Is 221 - s we propose the following

[2 algorithm:

4L_ _ _

Ii 17

Algorihm. Comine

1 begin J1 -BEG31, J2 BEG32
2 while (J2 S s) do
3 begin (u3 [j1. u3[j2) then

4 bg insert u4 [j] into L
5 j14- jI+4l

end
else begin 2 4- BEGL

7 while (-1A) and (u4 [j2 J > -4 ,L)) do
V8 bepgin nt 6.23)

and
10 n 2 J2+ 1

end
end

end

The above algorithm has obviously the structure of a merge technique. In

step 3 we test whether we should advance on S 1 or on S 22 In the former

case we must insert u4 (i1] into L (Step 4). In the latter case (Steps 6-9),

we scan the list L from its smallest element, thereby determining all the

points dominated by p j2; this part of the procedure is straightforward

T and runs in time proportional to the number of pairs (j2 ,A) which are

printed. The crucial task of the procedure is represented by Step 4:

"insert u4[ij into L". Indeed, at first sight, it appears to globally

require time proportional to i 1112 , since each insertion may require a

full scan of L; a more sophisticated implementation of L with an AVL tree

[would cut the global tim down to (IS111logS 111). However, there is an

interesting way Co organize Step 4 so that its global time requirements
be O(IS II)- This is accomplished by a backward pre-scan of the u 3-lisc

of SIll, which generates the schedule of insertion into L of the terms of

the u4-list of S11. Indeed, starting from the largest element of the

u 3-list and proceeding towards the smallest, let u 3(J) be the element

currently considered in the scan: we save the current value of PRED4[j]

(on the u4 -list) and update the u4-list by deleting u, [J]. It is clear

K !

I",i' 18
I that ?PRE [Cj] thus saved will give - in constant time - the place of

insertion of u [j] when the u3-lst of S1i is scanned forward. In sumary,

the insertion schedule is obtained by the following algorithm:

bez A 4- LAST (u3 list)
while (PRED3[1] 0 BEG) do

begin NEXU4(PRED4(A]]l 4- NEXT4(A]
PRED4[NET4[A]] *- PRED4(A]

end
end

Example: Given the set S1 depicted in figure l(a), in figure 1(b)

mPi

U,

2~

i __ ___________'

- 0 P3 p3 "
Op 44

pOp

SOp
3 scan

I ~ ~~(a)
,__

(b)

'F Figure 1. An example of et; 1,, a-_,.P and of the associated
i /doubly-throaded list. ~k are shown by broken

lines; '=,4 links by solid lines.

19

- we illustrate the initial configuration of the u3 - and u4 -list. The

j initial configuration of the array PRED4 is:

S 1 2 3 4 5 6 7 8

jPRED4: 7 5 4 1 8 2 BEG 3

1. The evolution of this array when executing the above scan is shown com-

pactly below (entries being updated are encircled) Afe
After :

j 1 2 3 4 5 6 7 8 Scanning

initial PRED4 7 5 4 1 8 2 BEG 3

7 5 4 1 2 BEG 3 p8

2BEG 3 P7

BEG 5 4 1 3 2 BEG 3 P6

BEG 'N41 3 2 BEG 3 p5

I BEG3 1 3 2 BEG 3 P4

final BEG II . 11 3 2 BEG 3 p
(insertion schedule) . , -

1 Therefore, the final configuration of the array PRED4 completely specifies

the insertion schedule into the L-list (which becomes the u4 -ILst when

the scan is complete) and line 4 of CCMBINE can be executed in constant

time. This shows that the entire CMBINE procedure runs in time linear

r n IS.11 + is221 and in the nuber of pairs (point dominances) obtained.

4. To analyze the performance of the proposed technique we note:

[i) All processing occurs in place, uses the QTL arrays, and reduces

to transformations of the pointers' values. Thus the space used

Is o(n).

2) As regards processing time each dominance pair (i.e., each

enclosed pair of rectangles) is found exactly once and in constantI

* ii i

L 20

time by the !jh£e-loop (7-9) of Combine. Thus, if q is the

number of pairs, O(q) optimal time is used for this activity.

The remaining computing time depends exclusively on the size n

of S: denote it by D(n). Also denote by Md(r,s) the running time

of Algorithm Merge on two sets with r and s d-dimensional points,

- respectively (d=2,3). Assuming, for simplicity, that n be even,

we have

(3) D(n) -2D(n/2) +M.3 (n/Z,n/2) +O(n)

where O(n) is the time used by the "divide" step 01. Analogously,

we have (assume that IS2 1 1 -m and that r be even):

1(4) M(r,s) -M3(r/2,m) +M3 (r/2,s-m) +M2 (r/2,max(m,s-m))
+ O(r +s)

where, again, O(r+s) time is needed to perform the set split. An

111 upper-bound to M3 (r,s) is obtained by maximizing the right-side of

(4) with respect to m. Since M2 (r',s') is O(r' +s'), arguing as

Siin [6], we obtain that D%(r,s) = 0((r+s)log(r+s)) and, con-

sequently, that D(n) - 0(n(logn) 2).

Incidentally, the 3-dimensional dominance problem is implicitly solved

by the technique described in this paper. In other words, gIven a set of

n points in 3-space, the p dominance pairs existing in this set can be

[found in time 0(nlosn+p) and space O(n), both of which are optimal

[~(see 6)

21

References

[1] H. S. Baird, "Fast algorithms for LSI artvork analysis," Design Automa-
tion and Fault-Tolerant Computing, 2, pp. 179-209; (1978).

[2] U. Lauther, "4-dimensional binary search trees as a means to speed up

associative searches in the design verification of integrated
circuits,"

Jour. of Design Automation and Fault-Tolerant Computing, Vol. 2, n. 3,
pp. 241-247; July 1978.

(3] V. Vaishnavi and D. Wood, "Data structures for the rectangle containment

and enclosure problems," Computer Graphics and Image Processing, 13,

pp. 372-384; (1980).

(4] J. L. Bentley and T. Ottmann, "Algorithms for reporting and counting

geometric intersections," IM Transactions on Computers, vol. 28,

n. 9, pp. 643-647; September 1979.

[5] H.-W. Six and D. Wood, "The rectangle intersection problem revisited,"

Comp. Sci. Tech. Report 79-CS-24, McMaster University; 1979.

(6] H. T. Rung, F. Luccio, and F. P. Preparata, "On finding the maxima of

a set of vectors," Journal of the ACK, vol. 22, no. 4, pp. 469-476,

* - October 1975.

* [71 D. E. Knuth, The Art of Computer Programming, vol. 1, Sorting and

Searching, Addison-Wesley, Reading, Mass. 1972.

I

22

SHORTEST PATHS WITHIN A SIMPLE POLYGON

F. P. Preparata

This note describes an efficient solution of the following geometric

problem: given a simple n-vertex polygon P in the Euclidean plane and

two distinguished points s and t, respectively called source and destination,

in the interior of P, find the shortest path between s and t lying entirely

within P.

This problem has been previously considered by M. I. Shamos [I], who

called it "internal distance" and described an algorithm which solves it

in time 0(n2). Shamos' method is based on the prior construction of the

so-called viewability graph of a polygon, namely the set of edges which

join pairs of vertices of the polygon and are entirely contained in its

interior; once the viewability graph is obtained, the shortest path within

1' the polygon is the shortest path on the viewability graph when each edge

is weighted with its length. We shall now show that only relevant portions

of the viewability graph need be constructed thereby reducing the computa-

tion time from O(n
2) to 0(nlogn).(1)

We need some nomenclature.

Definition 1. An n-vertex simple polygon P - (q,q 2 ,...,q_) is a2
closed polygonal chain such that no two nonconsecutive edges intersect. A

diazonal of P is a line segment qiqj. j 0 i+1, which does not cross any

edge of P. P is said to be triangulated if its interior has been divided

This work was supported in part by National Science Foundation under Grant
* 4MCS 7 -13642 and in part by the Joint Services Electronics Program under

Cont. .ct DAAG-29-78-C-0016.

(1)All logarithms are to the base 2.I

! K

1. 23

into n-2 triangles by n-3 diagonals.

Definition 2. The dual tree of a triangulated simple polygon P is a
I " graph T" (V,E) such that each vertex of V corresponds to a triangle of the

triangulation and each edge of E connects two vertices of V if and only if

the corresponding two triangles share a diagonal of P. The diagonal of P

and the corresponding edge in T are said to be dual.

Obviously T is a tree whose vertices have degree at most 3.

Polygon P

I

I:Figure 1. Illustration of polygon, sleeve, diagonals, and dual path -.

Definition 3. A triangulated polygon is called a sleeve if its dual

~graph is a polygonal chain. Figure 1 illustrates the notions of triangulated

i polygons, diagonals, sleeves, and dual graphs.

I
Id

I .o

- 1d

F1[24

Our method is based on the following observation. Let A(s) and

.1(t) be the two triangles in (the triangulated) P which contain s and t,

respectively. In T there is a unique path rr between the vertices which are

the duals of A(s) and A(t). The edges in fl are themselves duals of

diagonals of P, so that the sequence of edges of r, corresponds to a

sequence of diagonals dl,d 2,...,d p (ordered from s to t). Since di

divides P into two parts, which respectively contain s and t, the

shortest path from s to t within P crosses each and every d,....,d P ,

Notice that any other diagonal of P is either wholly contained in the

shortest path or does not share any internal point with it, since the

shortest path is entirely contained in the triangles which are duals

of the vertices of 'T.

This also indicates that, without loss of generality, we may rest:. -

ourselves to the plane polygon P' which dualizes to rr, tih the further

'4 condition that s and t be themselves vertices of the -polygon (that is, we

replace A(s) with the triangle having as its vertices s and the extremes

of d1 ; similarly \(t) is replaced by the triangle having as its vertices

t and the extremes of d). The plane polygon P' in fact is a sleeve by

Definition 3. Hereafter we assume that the given polygon P is a sleeve

with n vertices, including s and t.

Let v I and vi2 be the two extreme points of diagonal di,

(j) (j)1 <5 15 <n-3, and let D(s,v)i) be the shortest path from s to vi

j - 1,2, within the polygon P. It is easy to show that D(x,v±() is a polygonai

chain whose points are vertices of P. Let Di D(s,v) D(s,v2). In

:he graph Di there is a unique vertex v which is common to both D(s,v)

.. ..-'-

25

and D(s,v (2) and is farthest from s on either chain; we say that the

two chains diverge at v and obviously D(v,v 1) and D(v,v 2i) have no

edge in common.

Assume at first that neither of the latter subchains is empty; then

we claim that D(v,v j)) (j = 1,2) is an inward-convex polygonal chain,
3.

i.e., it is convex with convexity facing toward the interior of P. To

prove this, we first show that the region Ri delimited by D(v,v l)

D(v,v(2)), and di (briefly called a funnel) is'entirely contained in P.

Let d d ,...,di 1 be the diagonals crossed by D(v,vil) and D(v,v 2).

Clearly the triangle (v,v 1) -(2) R is contained in P; assumings -
inductively that Ri 1 C P, we see that Ri is obtained by adjoining to Rl

all or part of a triangle contained in P, thus &,aowing that Ri P.

Next if D(v,v~i)) is not inward-convex, then, by the triangle inequality,

(j), nieycnandP hrbthere is a shorter path from v to v , entirely contained P, thereby

violating the hypothesis that D(s,v,J)) is a shortest path from s to

v9) (see Figure 2). This convexity property also proves that D(s,vil
)

2.

Figure 2. Illustration of inward-convexity of D(s,v j)).

26

and D(s,vi (2) may diverge at most at one vertex v; for, if they diverge at

some other vertex u1, then they must reconverge at some vertex u2, and

the two distinct subchains from u1 and u2 mlust both be inward-convex, a

clear inconsistency.

In general D is a (possibly empty) chain branching at some vertex v,i

called a cusp into two inward-convex chains, which delimit a (possibly

degenerate) funnel. Notice that either of these two chains could be

(1) (2) (1)
empty (but not both, since v i v). If, say, D(v,v£) is empty,

then clearly D(v,v (2) - di; in this case the funnel degenerates to a

single diagonal, R has no interior, and Di becomes a single chain.

The algorithm successively constructs D1,D2, ... ,D and finally

* :D(s,t). In detail we have:

nitial Ste. Construct D by connecting s tov(1) (2)

General Step. (Construct Di 1 from Di). Let v be the cusp of D.,

at which the two subchains u au al...u b and uaua. . .u 0 diverge, where v- u a

" (.) (2) .u0 Without loss of generality, let v (1) . v) (see Figure 3)
i b vi ' v i+l(

Starting from u0 scan the sequence u0 ,ul,...,ub and let j be the smallest()(

integer for which vi+lUj becomes a supporting(1) segment of the boundary

of Ri . We distinguish two cases

1. (1) J <a. Delete all edges uu,+1 for 0: <25 j-1 and add
v(2)

edge u v "

(2) j > a. Delete all edges u'u 2 4 1 for 0 ! 5. t J-l and add

edge uvi+ (2) uj becomes the cusp of Ri+

A line I is a supporting line of a convex open curie C if it has at least

U. one point in common with C and C lies all on one side of 1, with its
convexity facing 2.

1. •27

a

u Wu
i a+l a- u0 -Ua. -

- . a-i

b-i' /A

• -.. Wa- (2) b u-vuubu 0 v 10 1
d d 4-i+-

(a) Ri+l (b)

Figure 3. Illustration of the general step. In (a), uj belongs to

u .. U ; in (b) uj belongs to ua..u b . R+ 1 is

- shown cross-hatched.

Fina 16 Step. Once Dn-3 has been constructed, one of the two sides

* - of P incident on t is treated as a diagonal d and the general step

is applied to this case, yielding D(s,t).

The correctness of the algorithm depends upon the following fact.

For any point u in the triangle defined by the cwo diagonals di and dL+1,

a shortest path from s to u passes through v. For, assume the contrary.

(1) (2)If both D(v,v i) and D(v,v 2) are nonempty, consider the edge incident

on v on either of these subchaias: since P is a sleeve, one of them is a

diagonal of P (although not necessarily an original diagonal of the

1. triangulated P); if either of these subchains is empty, then, as we saw

earlier, the other subchain consists of a single diagonal. in either case,

!e t v v' be this diagonal and let v v" be the other edge (Figure 4).

U
I

28

The polygonal chain A(s,u) which defines a shortest path from s to u

crosses v v at some point p 0 v. We claim chat the distance t1 from

s to p on 1(s,u) is strictly less than that (called I2) on the polygonal

chain obtained by concatenating D(s,v) and the segment 7-- . To prove

this, note that the wedge formed by v v' and v v" intersects both di

and di+1 ; thus, the destination point u in the triangle defined by di and

i+ld L 1 is in one of three regions (see Figure 4); all the three cases,

however, are treated analogously. Assuming, for example, that L(s,u) crosses

v v" (case shown in Figure 5) in a point pl, we have, by hypothesis, that

L(s,u) is a shortest path from s to u

11 + length((ppl)) < - length(vp) + leng th(vp)

where 2(p,pl) is the subchain of 1(s,u) from p to pl. But, by the triangle

inequality, length(vpl) < length(vp) +lengch(.(p,pl)), whence

L2"- AI length(vp;)+length(1(ppl)) -length(vpl) a 0

i.e., 12 • 1. Therefore Z2+length(pv') > 21 length(pv'), contradicting

the known fact that the shortest path from s to v' passes through v.

D(svs

'2(s'u)

,,.--adiagonal of p

• i-<-

U -)

Figure 4. Illustration for the proof that a shortest path between s and ut passes through v.sanu

1M

29

We now analyze the running time of the algorithm. Case (1) of the

general step takes constant time; Case (2) may involve scanning a large

number of vertices; however, once a vertex has been scanned and the

corresponding angle has been found to require continuation of the

.- scanning process, that vertex is definitively eliminated from consideration.

• "Since in P there are n-2 vertices besides s and t, the entire algorithm

runs in time O(n). The shortest-path algorithm, however, assumes that P

be a sleeve. To transform an arbitrary simple n-vertex polygon into a

sleeve, we first triangulate it in time 0(nlogn) using the algorithm

of [21; the dual T of the given polygon is obtained in time O(n) and,

still in linear time, the path ir is obtained. This completes the

transformation of the polygon into the required sleeve. Thus the entire

procedure runs in time O(nlogn), the triangulation task being dominant.

However, if preprocessing is allowed, the shortest path problem can be

solved in O(n) time for every pair of points s and t. We su=arize the

results as a theorem below.

Theorem 1. Given a simple polygon P with n vertices and two points s and t

in the interior of P, a shortest path between s and t lying entirely within

P can be found in 0(nlogn) time. If preprocessing of the polygon P is

allowed with preprocessing time 0(nlogn), then the problem can be solved

in O(n) tim for any two points s and t in the interior of P.

FReferences
I. M. I. Shamos, Computational Geometry, Dept. of Camp. Sci., Yale University,

1977. To be published by Springer Verlag.

2. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan,
"Triangulating a simple polygon," information Processing Letters,

Vol. 7, No. 4, pp. 175-179, June 1978.

